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A model for estimating the bulk modulus of 
polycomponent inorganic oxide glasses 

B. BRIDGE 
Department of Physics, Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK 

A new theory which allows the bulk modulus of polycomponent oxide glasses to be estimated 
to a precision of about +7% or better, is described. It is suggested that the bulk modulus is 
approximately proportional to the product of the reduced Madelung constant, the mean 
valence charge product weighted by the relative ionicities of the various bonds, the fourth 
power of the reciprocal molar volume per ion pair, and a factor less than 1 which increases 
with the mean stiffness of bonds. The relationship can be simplified by assuming that the 
ionicity and stiffness factors cancel and the important result is that the product expressing 
the theoretical bulk modulus can be evaluated solely from a knowledge of the coordination 
numbers in the crystalline forms of the component oxides, and the glass composition and 
density. A good correlation between this simplified product and the experimental modulus of 
a large range of phosphate and silicate glasses is obtained, providing that the mean valence 
charge product does not exceed the value obtaining in the parent glass. 

1. Introduction 
It is useful to be able to predict the elastic properties 
of polycomponent oxide systems solely from a knowl- 
edge of the system composition, density and well- 
known tabulated physical properties. Not surprisingly, 
frequent exercises of this kind are to be found in 
published literature [1-19]. Lowenstein [1] proposed 
that a rough proportionality between Young's modulus 
and the logarithm of the "field strength" of interstitial 
cations, held in an extensive range of silicate-based 
glasses. Makishima and Mackenzie [2, 3] proposed 
expressions relating the elastic moduli of glasses to the 
dissociation energies of the constituent bonds, and the 
packing density of atoms expressed as a summation 
function of the Pauling radii. These semiempirical 
formulae were tested using known elastic data on 
silicate and borate glasses. In an extensive range of 
papers by Anderson and Anderson and co-workers 
[6, 7, 10, 11, 14, 15, 22] the bulk modulus of iso- 
structural multicomponent crystalline oxides were 
related to the packing density of atoms and a sum- 
mation function over the valence charge products 
and degree of ionic character of the various bonds. 
However, in contrast to the work of Makishima and 
Mackenzie, packing density was defined in terms of 
the molar volume per ion pair. Soga and Anderson 
[13] applied similar ideas to polycomponent glasses. 
More recently, Bridge and Higazy [19] proposed a 
model in which the elastic moduli of polycomponent 
oxide glasses are expressed as a summation function 
over the numbers of network bonds per unit volume, 
the cross-link densities per cation, and the stretching 
force constants, for each type of bond in the glass. 
The force constants were estimated empirically from 
electro-negativity data, when not otherwise known, 
and the model was tested on a range of phosphate 
glasses. 

All of these models have a common feature in that 
elastic moduli are, in effect, related to the closeness of 
packing of atomic bonds, and the magnitude of their 
force constants (accepting that in the Makashima and 
Mackenzie model, bond dissociation energies are 
assumed to correlate with force constants - a doubt- 
ful approximation in many cases). However, the 
models differ substantially in the amount of calcu- 
lation required and in the results that they produce. In 
the present paper we attempt to improve on them with 
a model which represents a significant development of 
those approaches which involve molar volume as an 
important variable. Only in its early stages does the 
treatment follow that of other workers. However, we 
present it in full because it contains explanatory details 
not available elsewhere, and would otherwise be com- 
prehensible to the reader only by the inconvenient 
piecing together of accounts from multiple sources. 

2. The model as developed for 
polycrystall ine substances 

2.1. Diatomic materials 
If U~j is the interaction energy between atom i and 
atom j, the total energy per molecule, given that every 
U~j term is shared between two atoms, is 

< = Z (1)  
J 

where the sum is taken over all atoms except j = i. 
Let us assume that U, takes the form of the "Mie 
potential" 

- a  b 
U i -- r m + r- 7 (2) 

The total energy per mole is 

- N a  N b  
u - - -  + - -  (3)  

r m y n 

where N is Avogadro's number. 
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Writing the molar volume, V, in the form 

V = S N r  3 (4) 

where S is a constant which depends on the crystal 
class 

- A  B 
u = ~ + v./--- ~ (5) 

where 

A = asm/3 N(l-cm/3), B = 

For OU/OV = 0 

B = (m/n) A Vo ("-m/3) 

bsn/3N (l+n/3) (6) 

(7) 

Uo = ( -  n + m/n)A/Vo m/3 (8) 

where the subscript 0 denotes equilibrium quantities. 
Because in equilibrium the bulk modulus 

K = Vo L av  2 j (9) 

kVo Cm/3+~ -- (A /9 )m(n  - m) [4] (10) 

For a Coulombic potential m = 1 and 

a/r = {Ui} .  = (e2/r) ~ rZ, Z j / r  u (11) 

where the subscript a denotes the attractive com- 
ponent to U~, the repulsion component does not 
concern us at this stage. 

Defining the reduced Madelung constant 

= [ ~  rZ, Z j / ru ] /ZaZ  ~ (12) 

then 

a = e2~Z.Zo (13) 

2.2. Polyatomic materials [6, 11, 13] 
The interaction energy per molecule is 

V = �89 Z Uu (14) 
q 

i runs from 1 to p, the number of  atoms in the 
molecule, j runs from 1 to ~ with i r j. The factor 1 
allows for the fact that all terms are shared between 
two atoms. 

The total energy per atom pair is U/[P/2], i.e. 

U = ! Z U0 (15) 
P 

Defining a characteristic distance r*, which is some 
kind of  average nearest neighbour distance, by the 
relation 

- a  b 
W = - -  + - -  (16) 

r *m r *n 

where the mean molar volume per atom pair is 

V = S N r  . 3  = 2M/~p (17) 

where M is the molecular mass and 0 is the density. 
Then the molar energy per atom pair is 

- A  B 
U - -  v , m / 3  + V.,/----- ~ (18) 

where 

A = aS"/3N l+m/3 (19) 

as before, in equilibrium 

KVo (m/3+') = (A/9)n(n - m) (20) 

For a Coulomb potential m = 1 and 

a/r* = {U~} a = 1 / p ( e 2 / r ) ~ r * Z i Z j / r u  (21) 

Defining a reduced Madelung constant 

= [ Z  r*ZiZs/ru]/~,  Z ,  Zc (22) 

where the sum in the denominator is taken over all 
atoms in one molecule, 

a = e2~/p ~ ZaZ~ (23) 

Writing (E Z ,  Zo)/p = {ZaZc> , the average valence 
product in the molecule, we have 

a = e2~{Z~Zc)  (24) 

varies little from structure to structure. For  many 
diatomic and more complex solids, full calculations 
based on Equation 25 have shown ~ to follow closely 
the empirical relation 

= 1 . 8 9 -  1.00/m (25) 

where m is the weighted harmonic mean of the 
coordination numbers in the molecule [20-24]. 

Combining Equations 19, 20 and 24, we find for the 
bulk modulus, the relation 

K = 1 / 9 ( n -  1)S1/3N4/3e2ot<ZaZc)(2m/Qp) -4/3 

(Coulomb potential) (26) 

This equation could be used to determine the power n 
in the repulsive potential but this is not a very produc- 
tive exercise given that there are two major approxi- 
mations built into the above model, as follows. 

1. The use of  equations such as 5 and 18 to obtain 
a bulk modulus via Equation 12 assumes that a 
centrally symmetric potential exists at all stages 
during an isotropic deformation, i.e. all atomic 
spacings are assumed to contract by the same fraction, 
or put another way, all bonds are assumed to be 
compressed directly rather than bent, even though 
ionic bonds are the least directional of  all bonds. 
Now it takes less energy to deform a structure aniso- 
tropically (bond bending) than isotropically and so 
the obvious remedy is to multiply the right-hand side 
by a "bond bending" or "non-central force" factor s 
where s is < 1. 

2. No bond is completely ionic, i.e. there is never 
100% charge transfer between positive and negative 
ions. A "partly covalent character" expresses the fact 
that a fraction of  the valence change cloud envelopes 
both the positive and negative ions. This effect is 
actually quite easily allowed for without a major alter- 
ation in the model. Partial covalency reduces each 
valence charge e by a fac tor / ,  "the ionicity". Partial 
covalency may also alter the value of  B but there is 
no strong reason to suppose that it will alter much 
the value of  n. However, B enters into the bulk 
modulus relationship only implicitly through the 

805 



value of V0 (Equation 7). So provided that we do not 
wish to predict the values of V0 (experimental values 
being used in testing the bulk modulus relationship), 
covalency is completely allowed for via I (in our 
model). 

Allowing for approximations 1 and 2, the revised 
bulk modulus relationship becomes 

K = 1 / 9 ( n -  1)S1/3N4/3e2~s(I2Z~Zc)(2M/op) -4/3 

(27) 

Using Equation 8, the best fit [13] of theoretical to 
experimental values of molar lattice energy, U0, of 
diatomic ionic crystals are obtained within n = 9. At 
the same time it is worth noting that the effect of 
different forms of repulsive potential other than an r -n 
dependence, e.g. exponential forms, can be allowed 
for by a slight variation 4-e in the power of (2M/Qp) 
appearing in Equation 27 [6, 11]. Thus more generally: 

K ,,~ S1/3+-~N(4/3+-%20~s(I2ZaZc)(2M/op) (-4/3+-~) (28) 

For isostructural oxides S, c~, and s may be treated as 
constant so that the theory can be tested using the 
relation: 

K = const ( I2ZaZc)(2M/op)  (4/3+e) (29) 

It is important to note that whilst the latter equation 
has appeared in previous literature, Equation 28 from 
which it has been derived is original to the author, and 
provides the key for subsequent extension of the 
model to glasses, in Section 4. 

3. Review of past applications of the 
model (mostly crystalline oxides) 

Equation 29 has been found to hold very well for 
a number of important classes of diatomic solids 
(alkalis, halides, oxides, sulphides, selenides, carbides 
and antimonides), both ionic and covalent with the 
best fit of I 2 tending to decrease (as it should do) with 
increasing tendency towards covalency, as measured 
by independent techniques such as the empirical 
relationships between the electronegativity scale and 
the fraction of ionic character [25]. The quantity e 
varies from around 1/3 to zero moving from strongly 
ionic materials to the more covalent ones. It is note- 
worthy that even for covalent structures a 1/r depen- 
dence for the repulsive component of the lattice energy 
seems a reasonable assumption. Equation 29 also 
agreed very well with available data on several classes 
of polyatomic structure, for example, fluorides and 
complex oxides with the rutile, corundum and spinel 
structures [10, 11]. 

For the noble gas solids neon, argon, krypton, 
and helium experimental data are represented approxi- 
mately by K ~ (21l/1/01)) -3 corresponding to m = 6 in 
Equation 10. Hence the above model is consistent with 
the Van Der Waals type of interaction supposedly 
responsible for the cohesion of these structures. 

Apart from isostructural comparisons, systematic 
patterns in elastic constants also emerge when com- 
pounds in different structural classes are compared. 
Anderson [11] showed that for available data, a rule 

K(2M/~p) x ~ constant, x ~ 4; for M/p = const. 

(30) 
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applied. As yet the available data are too limited for 
this rule to have been put to a wide test. However, for 
the case M/p ~ 21, the rule is well established. Most 
naturally occurring minerals (complex oxides and 
silicates) have M/p ~ 21 and for existing moduli data 
on these, Equation 5 always holds [5, 6, 7, 14, 15]. The 
various references give x variously between 3 and 4 as 
the best fit. More extensively, Equation 8 has been 
shown to hold [6, 14] when volume changes are caused 
not just by structural changes but by any other cause 
(pressure, temperature or porosity changes), M/p ~ 21 
being the only proviso. This phenomenon, i.e. the fact 
that the bulk modulus of oxide and silicate com- 
pounds with M/p ~ 21 varies as (mean molar volume 
per ion pair) -4 irrespective of how volume change 
is caused, is called the Law of Corresponding States 
[7, 14, 16]. 

Studies of elastic constant variations at constant 
M/p have been performed on glasses. Anderson [13] 
showed that an approximate K oc (221/1/01)) -4 rule held 
for a representative range of 29 silicate-based glasses. 
These glasses encompassed a wide range of oxide 
constituent proportions and M/p was roughly con- 
stant in the range 21 to 25. Soga et al. [17] has shown 
that glasses and crystalline members of the As-Se 
system fitted a K ~ V -4 variation. Here M/p was 
roughly constant between 75 and 79. Soga et al. 
[17] also showed that the same power law held for 
several pairs of crystalline oxides and their glassy 
counterparts indicating that the Law of Correspond- 
ing States seems to apply to the glass-crystal phase 
transformation (here M/p ~ 21.7 to 24.8). The 
simplistic systematics implied by Equation 33 is rather 
analogous to Birch's Law [11, 18] which purports an 
even simpler relationship between M/p (mean atomic 
weight), compressional wave velocity and density, 
which is satisfied by a large number of rocks and 
minerals. 

This review would not be complete without mention 
of the fact that in early studies when data on relatively 
few oxides were available, even isostructural oxides 
were considered to have bulk moduli following a 
(2M/~p) -3 or (2M/op) -4 law, i.e. in Equation 20 
m ~ 6 to 9 [6]. This, in turn, ted to speculation 
than Van Der Waals forces between close-packed 
oxygen spheres dominated the elastic behaviour 
[6, 13]. Subsequently this hypothesis was discarded on 
re-measurement of the bulk moduli of some oxides 
(CaO, FezO3 and BeO). The problem was that measure- 
ments on powdered polycrystals can easily be in gross 
error if imperfect compaction of the powder is present. 
It is safer to obtain polycrystalline values by averaging 
single crystal data. Then subsequently, as more oxide 
data became available, the fourth power law for 
constant M/p emerged. However, no physical mean- 
ing for this law has ever been given - why variations 
in S, s, / ,  Zo and Z~ between different structural classes 
should lead to the correlations described is not obvious 
and to this extent the theory is rather unsatisfactory. 
One possibility is to suggest that the bond bending 
factor, s, might increase rapidly as (2M/op) decreases 
and this, in part, begins to lend some credibility to 
Equation 30. The suggestion seems reasonable for the 



complex oxides based on silicates etc., for which 
Equation 30 has also been found to hold. Oxides like 
these have large-ringed structures compared with the 
simple oxides like CaO and MgO and the halides. 
Large-ringed structures tend to produce bond-bending 
effects during isotropic deformation, so reducing the 
bond bending factor, s. Thus it is easy to see how 
s could be quite strongly dependent on the atomic 
volume per ion pair, assuming that the latter bears 
some relation to ring size. 

4. Extension of the model to glasses 
We have just reviewed the success of Equation 29 in 
explaining elastic data on isostructural polycrystals. 
As it is difficult to see how isostructural concepts can 
be applied to glasses, we have to quantify s in some 
way, i.e. we have to use Equation 28 derived in this 
paper rather than Equation 29. 

The following arguments are presented at length 
elsewhere [19, 25-28], and in the light of the discussion 
of the last paragraph of Section 3, we might write s in 
the form 

s = PD (31) 

where D is a "bond directionality" or "stiffness" 
factor less than 1 which increases with the mean ratio 
of bending to stretching force constants for the bonds 
in glass ( f / fb>, and p is another fractional quantity 
which increases as the tightness of packing of the glass 
structure increases, for constant ( f / fb  >. Thus both s 
and D are unity when isotropic deformation leads to 
no bending of bonds. Several measures of packing 
density (ring size, molar volume per ion pair, and 
functions involving crystal or Pauling radii) have been 
used in the literature on the systematics of the elastic 
moduli of glasses [2, 3, 19, 25-27]. The use of molar 
volume per ion pair has the advantage that it is easy 
to calculate and we shall suggest that 

P ~ const2(2M/~p) -~ (32) 

where co ~ 4/3. The choice of power for co seems 
reasonable given the success of the ring deformation 
model of Bridge et al. [27] which proposed a fourth 
power dependence of  compressibility on mean ring 
size in simple diatomic oxide glasses. Combining 
Equations 28, 31 and 32 we have, for polycomponent 
oxide glasses 

K ~ const3S1/3~D(I2ZaZc)(2M/op)  x, 

x ~ 3 or higher (33) 

where the values of e, m and co are now subsumed in 
the index x. We have suggested that x might be some- 
what higher than the sum of (1 + m/3) + co because 
Van der Waals forces between different elements of a 
distorted three-dimensional network will make some, 
albeit small, contribution to the elastic properties 
of oxide glasses. The empirical value of x ~ - 4  
found by Anderson and Soga to fit a wide range 
of silicate glass compositions to a trend line K = 
cons t (2M/op)  x, now seems to have a reasonable 
theoretical basis. They did not estimate values of 
<I 2 g a Z  c >, variations of which were presumably small 

compared with (2M/Qp) x, thus showing up as a small 
spread of data about the trend line. 

Setting aside bond bending and molar volume (or 
ring size) considerations, the main determinants of K 
in the present model (given the structural insensitivity 
of c0 are the ionic charge numbers and the degree of 
ionicity. However, on a previous model of Bridge and 
Higazy [19] the corresponding important variables 
were the coordination numbers (as used in calculating 
the number of network bonds per unit volume) and 
first order stretching force constants. Whereas there is 
a linear dependence of bulk modulus on coordination 
numbers in the previous theory, the dependence of 
modulus on coordination number in the present 
model is very weak because e increases so slowly with 
coordination number. At first sight this seems a total 
contradiction; however, a closer examination shows 
that there is no conflict between the theories. The first 
term in a typical power series used to compute e is of 
the order of the mean coordination number (in the 
case of simple diatomic materials with common cation 
and mean coordination numbers, the final term is that 
coordination number). However, slowly converging 
oscillations in successive terms caused by the long- 
range nature of the Coulomb potential cause e to be 
only a small fraction of the first term. Now in the 
model of  Bridge and Higazy, long-range effects, i.e. all 
other interactions as well as nearest neighbour inter- 
actions, are subsumed in the values of stretching force 
constants to be used in the model. That is, the experi- 
mental values of these constants are the net results 
of combined long-range and nearest neighbour inter- 
actions. Long-range effects are thus allowed for in the 
values of f ,  the values of which we anticipate will 
tend to become smaller with increasing coordination 
numbers. 

The present model has the advantage of having 
fewer variables, the values of which are uncertain, 
although it remains to be seen whether discontinuities 
in composition gradients of modulus can be explained 
as successfully as the previous theory allowed. Large 
values of Z~ and Zr do not lead to erroneously large 
values of K simply because the quantity I tends to 
decrease with increasing charge number. 

5. Application 
We shall now test Equation 33 on a broad range of 
silicate and phosphate glasses, the bulk moduli of 
which are known [2, 3, 19, 25, 29-35]. To achieve the 
simplest possible calculation we make an additional 
assumption that as I decreases the directionality of 
bonds, i.e. the magnitude of D, increases. Thus we 
assume that Equation 33 can be simplified to 

K ~ const4Sl/3~(Z~Z~>(2M/Qp) ~, x ~ - 4  (34) 

In this equation only S is not readily computable. It is 
worth reminding ourselves that S is the ratio of the 
mean molar volume per ion pair to the product of the 
mean nearest neighbour distance and Avogadro's 
number. (It is, of course, constant in isostructural 
crystals.) Even for the extremes of  bond angles occur- 
ring in inorganic structures it is difficult to imagine S 
to vary by more than + 30% causing Kto  vary by less 
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TAB LE II Coordination numbers for component oxides, used 
for calculating the reduced Madelung constant of multicomponent 
oxide glasses 

Oxide Coordination Arithmetic Reference 
numbers for mean 
M and O coordination 

number 

100 

80 

P205 3.2 2.4 [38] p. 473 
SiO 2 4.2 2.67 '[38] p. 803 
CoO 6.6 6 [38] p. 441 
CaO 6.6 6 [38] p. 441 60 
MgO 6.6 6 [38] p. 441 
BaO 6.6 6 [38] p. 441 K 
PbO 4.4 4 [38] p. 481 (6pa) 
ZnO 4.4 4 [38] p. 441 
CuO 4.4 4 [38] pp. 102, 445 40 
BeO 4.4 4 [38] p. 441 
Na20 4.8 5.33 [38] p. 441 
Li20 4.8 5.33 [38] p. 441 
TiO2 6.3 4 [38] p. 441 
Cu20 2.4 2.67 [38] p. 441 
AI203 6.4 4.8 [38] p. 44l 20 
Fe203 6.4 4.8 [38] p. 441 
WO 3 6.2 3 [38] p. 441 
MoO 3 6.3(3) 3.73 [38] p. 473 

6.2(2) 
1 dangling 0 0 

V205 ditto 3.73 [38] pp. 470, 471 

~ ~ 

�9 o /o7"0@ 

I I I I I [ 

10 20 30 

~( Z.Zo ) [2M/Qp] -4 (10 -~ cm 12) 

than 4-10%, all other factors remaining the same. 
Because the K values of the glasses specified in 
Table I span a range of 500%, a reasonable test of 
Equation 1 ought to be provided by these glasses. To 
compute ~ and (ZaZc) the coordination numbers of 
the various atoms are assumed to be the same as 
obtaining in the component oxides [36] (Table II). 
Assuming that the double bond P=O in P205 gives but 
a minor contribution to the compressibility of P205 ,  

the coordination of the P atom is assumed to be 
three-fold. For simplicity, arithmetical and not 
weighted harmonic means of the cation and anion 
coordination numbers have been computed from the 
glass compositions. In Table I it will be seen that 

varies by less than 10% over the entire range of 
glasses, thus amply justifying the approximation. The 
value of (Z~Zc) was computed from the glass compo- 
sitions and the number of network bonds per formula 
unit (i.e. the cation coordination numbers) for each 
glass component. 

6. R e s u l t s  a n d  d i s c u s s i o n  
In Fig. 1, the product ~(Z, Zc)(M/@p) -4 is plotted 
against experimental bulk modulus, for some 27 glasses 
involving 20 different oxide components. The only 
constraint used to select the glasses is that (ZaZr was 
less than the value obtaining in the basic glass former. 
It will be noted that a reasonably linear relationship 
exists�9 The gradient of a least squares fit curve, treat- 
ing the origin as a certain point, is determined to 
+ 7%, consistent with the expected tolerance of S 1/3. 
Many other glass compositions [2, 3, 19, 25-36] subject 
to the same constraint on (Z~Z~) fit the same pattern, 
but are not tabulated on grounds of space. However, 
glasses with (Z~Z~) higher than found in the basic 

Figure 1 Test of relationship between bulk modulus and the product 
of the reduced Madelung constant, mean valence number and the 
fourth power of the reciprocal molar volume per ion pair, in 
phosphate and silicate glasses. For identification of data points with 
specific glasses, see Table I. The choice of glasses is constrained only 
by the condition that the mean valence number does not exceed the 
value of this number on the parent glass. 

glass former, representative examples of which are 
shown in Table I, reduce the linear correlation sub- 
stantially. Furthermore, from the limited data avail- 
able, borate glasses do not fit the curve of Fig. 1. 

7. C o n c l u s i o n  
The bulk modulus of a range of phosphate and silicate 
glasses containing many different oxides can be pre- 
dicted to a precision of + 7% from a knowledge of the 
glass composition, density, and the anion, cation 
coordination and valencies of the component oxide. 
The range is defined by the constraint that (ZaZc) 
should be less than the value occurring in the basic 
glass former. Quite possibly the application of Equa- 
tion 34 has not yet been optimized. It could be that the 
assumption that D increases as I decreases is not the 
best one to make and that a wider range of glasses can 
be accommodated by the model by assuming D to be 
constant, and thus by retaining I in Equation 33. In 
other words, it could be that glasses with very high 
(ZaZc) values did not fit our model simply because by 
eliminating/from Equation 33, the effect of (ZaZc) 
was exaggerated. Values of I could be estimated from 
cation and anion electronegativity, for example, by 
means of Pauling's expression for fractional ionic 
character. This approach involves considerably more 
calculation than has been adopted at present, and if 
fruitful will be presented in a future publication. 
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